19-4110; Rev 1; 9/08

EVALUATION KIT AVAILABLE

1μΑ, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier

General Description

The MAX9938 high-side current-sense amplifier offers precision accuracy specifications of V_{OS} less than 500µV (max) and gain error less than 0.5% (max). Quiescent supply current is an ultra-low 1µA. The MAX9938 fits in a tiny, 1mm x 1mm UCSP™ package size or a 5-pin SOT23 package, making the part ideal for applications in notebook computers, cell phones, PDAs, and all battery-operated portable devices where accuracy, low quiescent current, and small size are critical.

The MAX9938 features an input common-mode voltage range from 1.6V to 28V. These current-sense amplifiers have a voltage output and are offered in three gain versions: 25V/V (MAX9938T), 50V/V (MAX9938F), and 100V/V (MAX9938H).

The three gain selections offer flexibility in the choice of the external current-sense resistor. The very low 500μ V (max) input offset voltage allows small 25mV to 50mV full-scale V_{SENSE} voltage for very low voltage drop at full-current measurement.

The MAX9938 is offered in tiny 4-bump, UCSP (1mm x 1mm x 0.6mm footprint), 5-pin SOT23, and 6-pin μ DFN (2mm x 2mm x 0.8mm) packages specified for operation over the -40°C to +85°C extended temperature range.

Applications

Cell Phones

PDAs

Power Management Systems

Portable/Battery-Powered Systems

Notebook Computers

Features

- Ultra-Low Supply Current of 1µA (max)
- ◆ Low 500µV (max) Input Offset Voltage
- Low < 0.5% (max) Gain Error</p>
- Input Common Mode: +1.6V to +28V
- Voltage Output
- Three Gain Versions Available 25V/V (MAX9938T) 50V/V (MAX9938F) 100V/V (MAX9938H)
- Tiny 1mm x 1mm x 0.6mm, 4-Bump UCSP, 5-Pin SOT23, or 2mm x 2mm x 0.8mm, 6-Pin µDFN Packages

_Ordering Information

PART	PIN- PACKAGE	GAIN (V/V)	TOP MARK
MAX9938TEBS+	4 UCSP	25	+AGD
MAX9938FEBS+	4 UCSP	50	+AGE
MAX9938HEBS+	4 UCSP	100	+AGF
MAX9938TEUK+	5 SOT23	25	+AFFB
MAX9938FEUK+	5 SOT23	50	+AFFC
MAX9938HEUK+	5 SOT23	100	+AFFD
MAX9938FELT+	6 µDFN	50	+ACM

+Denotes a lead-free/RoHS-compliant package.

Note: All devices are specified over the -40°C to +85°C extended temperature range.

UCSP is a trademark of Maxim Integrated Products, Inc.

_Pin Configurations

___ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX9938

ABSOLUTE MAXIMUM RATINGS

RS+. RS- to GND	0.3V to +30V
OUT to GND	0.3V to +6V
RS+ to RS	±30V
Short-Circuit Duration: OUT to GND	Continuous
Continuous Input Current (Any Pin)	±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
4-Bump UCSP (derate 3.0mW/°C above +7	70°C)238mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Bump Temperature (soldering) Reflow	+260°C
Lead Temperature (soldering, 10s)	+300°C
Lead Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{RS+} = V_{RS-} = 3.6V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		ТҮР	MAX	UNITS	
		$V_{RS+} = 5V, T_A = +25^{\circ}C$		0.5	0.85		
Current (Nate 2)		$V_{RS+} = 5V, -40^{\circ}C < T_A < +85^{\circ}C$			1.1	μA	
	ICC	$V_{RS+} = 28V, T_A = +25^{\circ}C$		1.1	1.8		
		$V_{RS+} = 28V, -40^{\circ}C < T_A < +85^{\circ}C$			2.5		
Common-Mode Input Range	V _{CM}	Guaranteed by CMRR , -40°C < T_{A} < +85°C	1.6		28	V	
Common-Mode Rejection Ratio	CMRR	$1.6V < V_{RS+} < 28V, -40^{\circ}C < T_A < +85^{\circ}C$	94	130		dB	
Input Offact Valtage (Nate 2)		$T_A = +25^{\circ}C$		±100	±500		
Input Onset Voltage (Note 3)	VOS	-40°C < T _A < +85°C			±600	μν	
		MAX9938T		25		V/V	
Gain	G	MAX9938F		50			
		MAX9938H		100			
Caip Error (Note 4)	GE	$T_A = +25^{\circ}C$		±0.1	±0.5	%	
		-40°C < T _A < +85°C			±0.6		
Output Resistance	R _{OUT}	(Note 5)	7.0	10	13.2	kΩ	
		Gain = 25		1.5	15		
OUT Low Voltage	V _{OL}	Gain = 50		3	30	mV	
		Gain = 100		6	60		
OUT High Voltage	VOH	V _{OH} = V _{RS-} - V _{OUT} (Note 6)		0.1	0.2	V	
Small-Signal Bandwidth (Note 5)	BW	$V_{SENSE} = 50 mV$, gain = 25		125			
		$V_{SENSE} = 50 mV$, gain = 50		60		kHz	
		V _{SENSE} = 50mV, gain = 100		30			
Output Settling Time	ts	1% final value, V _{SENSE} = 50mV		100		μs	
Power-Up Time	ton	1% final value, $V_{SENSE} = 50mV$		200		μs	

Note 1: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

Note 2: V_{OUT} = 0. I_{CC} is the total current into RS+ plus RS- pins.

Note 3: V_{OS} is extrapolated from measurements for the gain-error test.

Note 4: Gain error is calculated by applying two values of VSENSE and calculating the error of the slope vs. the ideal:

Gain = 25, V_{SENSE} is 20mV and 120mV.

Gain = 50, V_{SENSE} is 10mV and 60mV.

Gain = 100, V_{SENSE} is 5mV and 30mV.

Note 5: The device is stable for any external capacitance value.

Note 6: V_{OH} is the voltage from V_{RS} to V_{OUT} with $V_{SENSE} = 3.6V/gain$.

Typical Operating Characteristics

 $(V_{RS+} = V_{RS-} = 3.6V, T_A = +25^{\circ}C, unless otherwise noted.)$

MAX9938

V_{OUT}

 $(V_{RS+} = V_{RS-} = 3.6V, T_A = +25^{\circ}C, unless otherwise noted.)$ SMALL SIGNAL GAIN CMRR **VOUT VS. VSENSE** (SUPPLY = 1.6V)vs. FREQUENCY vs. FREQUENCY 1.8 5 0 $A_V = 25V/V$ 1.6 -20 0 G 1.4 -40 100V/\ -5 1.2 G = 50-60 GAIN (dB) GAIN (dB) G = 100 $A_V = 50 V/V$ Vour (V) -10 1.0 -80 .G = 50 0.8 -15 -100 100 = G : = 25 0.6 -20 -120 0.4 -25 -140 0.2 0 -30 -160 0 20 40 60 80 100 1Hz 10Hz 100Hz 1kHz 10kHz 100kHz 1MHz 1Hz 10Hz 100Hz 1kHz 10kHz 100kHz 1MHz FREQUENCY (kHz) FREQUENCY (kHz) V_{SENSE} (mV) SMALL-SIGNAL PULSE RESPONSE **SMALL-SIGNAL PULSE RESPONSE** (GAIN = 100)(GAIN = 50)MAX9938 toc13a MAX9938 toc13b 15mV 30mV VSENSE 10mV VSENSE 20mV 1.5V 1.5V VOUT 1V VOUT 1V 20µs/div 25µs/div SMALL-SIGNAL PULSE RESPONSE (GAIN = 25)MAX9938 toc13 60mV VSENSE 40mV 1.5V

25µs/div

1V

Typical Operating Characteristics (continued)

MAX9938

Typical Operating Characteristics (continued)

(V_{RS+} = V_{RS-} = 3.6V, T_A = +25°C, unless otherwise noted.)

LARGE-SIGNAL PULSE RESPONSE (GAIN = 25) MAX9998 Ioc14c 20mV VSENSE VOUT VOUT VSENSE VOUT 25µs/div

Pin Description

	PIN		NAME	FUNCTION	
UCSP	SOT23	μDFN	NAME	FUNCTION	
A1	5	4	RS+	External Sense Resistor Power-Side Connection	
A2	4	6	RS-	External Sense Resistor Load-Side Connection	
B1	1, 2	3	GND	Ground	
B2	3	1	OUT	Output Voltage. VOUT is proportional to VSENSE = VRS+ - VRS	
_	_	2, 5	N.C.	No Connection. Not internally connected.	

_Typical Operating Circuit

Detailed Description

The MAX9938 unidirectional high-side, current-sense amplifier features a 1.6V to 28V input common-mode range. This feature allows the monitoring of current out of a battery with a voltage as low as 1.6V. The MAX9938 monitors current through a current-sense resistor and amplifies the voltage across that resistor.

The MAX9938 is a unidirectional current-sense amplifier that has a well-established history. An op amp is used to force the current through an internal gain resistor at RS+, which has a value of R₁, such that its voltage drop equals the voltage drop across an external sense resistor, RSENSE. There is an internal resistor at RS- with the

Table 1. Internal Gain Setting Resistors(Typical Values)

GAIN (V/V)	R 1 (Ω)	R оυт (kΩ)
100	100	10
50	200	10
25	400	10

same value as R₁ to minimize offset voltage. The current through R₁ is sourced by a high-voltage p-channel FET. Its source current is the same as its drain current, which flows through a second gain resistor, R_{OUT}. This produces an output voltage, V_{OUT}, whose magnitude is ILOAD x RSENSE x R_{OUT}/R₁. The gain accuracy is based on the matching of the two gain resistors R₁ and R_{OUT} (see Table 1). Total gain = 25V/V for the MAX9938T, 50V/V for the MAX9938F, and 100V/V for the MAX9938H. The output is protected from input overdrive by use of an output current limiting circuit of 7mA (typical) and a 6V clamp protection circuit.

Applications Information

Choosing the Sense Resistor

Choose R_{SENSE} based on the following criteria:

Voltage Loss

A high R_{SENSE} value causes the power-source voltage to drop due to IR loss. For minimal voltage loss, use the lowest R_{SENSE} value.

MAX9938

1μΑ, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier

OUT Swing vs. V_{RS+} and V_{SENSE}

The MAX9938 is unique since the supply voltage is the input common-mode voltage (the average voltage at RS+ and RS-). There is no separate V_{CC} supply voltage pin. Therefore, the OUT voltage swing is limited by the minimum voltage at RS+.

Vout (max) = V_{RS+} (min) - V_{SENSE} (max) - V_{OH}

and

$$R_{SENSE} = \frac{V_{OUT}(max)}{G \times I_{LOAD}(max)}$$

VSENSE full scale should be less than VOUT/gain at the minimum RS+ voltage. For best performance with a 3.6V supply voltage, select RSENSE to provide approximately 120mV (gain of 25V/V), 60mV (gain of 50V/V), or 30mV (gain of 100V/V) of sense voltage for the full-scale current in each application. These can be increased by use of a higher minimum input voltage.

Accuracy In the linear region (V_{OUT} < V_{OUT(max)}), there are two components to accuracy: input offset voltage (V_{OS}) and gain error (GE). For the MAX9938, V_{OS} = 500μ V (max) and gain error is 0.5% (max). Use the linear equation:

VOUT = (gain ± GE) × VSENSE ± (gain × VOS)

to calculate total error. A high RSENSE value allows lower currents to be measured more accurately because offsets are less significant when the sense voltage is larger.

Efficiency and Power Dissipation

At high current levels, the I²R losses in R_{SENSE} can be significant. Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating. Also, the sense resistor's value might drift if it is allowed to heat up excessively. The precision V_{OS} of the MAX9938 allows the use of small sense resistors to reduce power dissipation and reduce hot spots.

Kelvin Connections

Because of the high currents that flow through RSENSE, take care to eliminate parasitic trace resistance from causing errors in the sense voltage. Either use a fourterminal current-sense resistor or use Kelvin (force and sense) PCB layout techniques.

Optional Output Filter Capacitor

When designing a system that uses a sample-and-hold stage in the ADC, the sampling capacitor momentarily loads OUT and causes a drop in the output voltage. If sampling time is very short (less than a microsecond), consider using a ceramic capacitor across OUT and GND to hold V_{OUT} constant during sampling. This also decreases the small-signal bandwidth of the current-sense amplifier and reduces noise at OUT.

Bidirectional Application

Battery-powered systems may require a precise bidirectional current-sense amplifier to accurately monitor the battery's charge and discharge currents. Measurements of the two separate outputs with respect to GND yields an accurate measure of the charge and discharge currents respectively (Figure 1).

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: *Understanding the Basics of the Wafer-Level Chip-Scale Package (WL-CSP)* available on Maxim's website at **www.maxim-ic.com/ucsp**.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
2 x 2 UCSP	R41A1+1	<u>21-0242</u>
5 SOT23	U5-2	<u>21-0057</u>
6 µDFN	L622+1	<u>21-0164</u>

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

Package Information (continued)

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>.

Package Information (continued)

////XI///

DOCUMENT CONTROL NO.

21-0164

REV. $\frac{2}{2}$

В

TITLE:

APPROVAL

PACKAGE OUTLINE 6. 8. 10L uDFN. 2x2x0.80 mm

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

COMMO	COMMON DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.		
A	0.70	0.75	0.80		
A1	0.15	0.20	0.25		
A2	0.020	0.025	0.035		
D	1.95	2.00	2.05		
E	1.95	2.00	2.05		
L	0.30	0.40	0.50		
L1	0.10 REF.				

PACKAGE VARIATIONS				
PKG. CODE	N	е	b	(N/2 -1) x e
L622-1	6	0.65 BSC	0.30±0.05	1.30 REF.
L822-1	8	0.50 BSC	0.25±0.05	1.50 REF.
L1022-1	10	0.40 BSC	0.20±0.03	1.60 REF.

NOTES:

- 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
- 2. COPLANARITY SHALL NOT EXCEED 0.08mm.
- 3. WARPAGE SHALL NOT EXCEED 0.10mm.
- 4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S). 5. "N" IS THE TOTAL NUMBER OF LEADS.
- 6. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- 8. ONLY 8L PACKAGE COMPLIES TO JEDEC M0252.
- 9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PACKAGE CODES.

-DRAWING NOT TO SCALE-

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/08	Initial release	—
1	9/08	Added µDFN package information	1, 2, 4, 5, 9

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____

© 2008 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.

_____ 13